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Abstract
Unsupervised learning objectives like autore-
gressive and masked language modeling consti-
tute a significant part in producing pre-trained
representations that perform various down-
stream applications from natural language un-
derstanding to conversational tasks. However,
despite impressive generative capabilities of re-
cent large language models, their abilities to
capture syntactic or semantic structure within
text lag behind. We hypothesize that the mis-
match between linguistic performance and com-
petence in machines is attributable to insuffi-
cient learning of linguistic structure knowledge
via currently popular pre-training objectives.
Working with English, we show that punctu-
ation restoration as a learning objective im-
proves performance on structure-related tasks
like named entity recognition, open informa-
tion extraction, chunking, and part-of-speech
tagging. Punctuation restoration results in ▲≥
2%p improvement in 16 out of 18 experiments,
across 6 out of 7 tasks. Our results show that
punctuation restoration is an effective learning
objective that can improve structure understand-
ing and yield a more robust structure-aware rep-
resentations of natural language in base-sized
models.

1 Introduction

The modern natural language processing paradigm
centers around transformer-based pre-trained lan-
guage models (PLMs; Peters et al. (2018); Rad-
ford et al. (2018); Devlin et al. (2019)). They are
optimized on masked language modeling (MLM)
and autoregressive language modeling, which pro-
vide powerful representations to approach various
problems in natural language processing. It is no
exaggeration that language models have become
effective in tasks like named entity recognition
(NER), information extraction, semantic role la-
beling (SRL) that require understanding of syntac-
tic, semantic, and discourse structure (Wang et al.,
2021, 2022). However, the following suggests there

is still room for improvement in current language
models’ abilities to understand such structure in
natural language to perform downstream tasks reli-
ably and robustly.

1. The reversal or factorization curse. Lan-
guage models fail to infer "B is A" from "A is
B" (Berglund et al., 2024), or their representa-
tions are highly dependent on the order (fac-
torization) of the input (Kitouni et al., 2024).

2. The curse of performance instability. Model
checkpoint initialization and training dataset
order strongly affects sensitivity to syntactic
structure (Zhou et al., 2020; McCoy et al.,
2020; Du and Nguyen, 2023).

3. Poor out-of-distribution generalization.
Systems report close-to-human performance
on one dataset yet perform poorly on other
datasets representing the same task, due to
their picking up spurious correlations rather
than learning the task (Gururangan et al.,
2018; McCoy et al., 2019; Serrano et al.,
2023).

4. Insufficient or underutilized structure in-
formation. While PLMs do encode some
structure, they are poor few-shot structure pre-
dictors (Zhao et al., 2023; Bai et al., 2023) and
perform better when input is reinforced with
linguistic structure information (Strubell et al.,
2018; He et al., 2020; Sachan et al., 2021; Wu
et al., 2021; Fei et al., 2021; Xie et al., 2023;
Huang et al., 2024). This indicates their repre-
sentations are insufficient or underutilized.

These four phenomena illustrate that current rep-
resentations as a result of autoregressive (Radford
et al., 2018) or masked (Devlin et al., 2019; Liu
et al., 2019; Raffel et al., 2019) language mod-
eling are insufficient for structure understanding.
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Efforts to mitigate such shortcomings include data-
oriented approaches like syntactic augmentation to
improve robustness to spurious correlations (Min
et al., 2020; Yaghoobzadeh et al., 2021) and revers-
ing input to mitigate the reversal curse (Golovneva
et al., 2024). Architecture oriented efforts include
adding explicit graph network layers to encode
structure, resulting in improvement in benchmark
scores (Zhang et al., 2019; Sachan et al., 2021) and
generalization abilities (He et al., 2020; Sartran
et al., 2022).

They are human-in-the-loop methods that re-
quire human input or annotation, or a system that
requires it. Recent work in distilling linguistic struc-
ture knowledge from natural language text to rep-
resentations without supervision include inside-
outside dynamic programming for tree induction
(Drozdov et al., 2019), dependency-constrained
self-attention (Shen et al., 2021; Momen et al.,
2023), and augmenting MLM with sentence-level
contrastive learning (CLEAR; Wu et al., 2020).
With the exception of CLEAR, these methods re-
quire additions to the model architecture. Wang
et al. (2021) and Wang et al. (2022) propose struc-
ture pre-training but use human-annotated data.

In this paper, we investigate whether it is pos-
sible for an unsupervised method to mitigate the
four shortcomings of the modern language models
without additional parser or tree architecture imple-
mentation. In particular, we believe the pre-training
stage of current PLMs may be further improved and
propose punctuation restoration (PR) as an unsu-
pervised learning objective that improves structure
understanding. Punctuation markers, along with
capitalization, often serve as boundary markers be-
tween different syntactic components of the sen-
tence (Briscoe, 1996; Bayraktar et al., 1998). Thus,
the model’s ability to predict punctuation from
plain text may correlate to its ability to encode
syntactic boundaries and thus structure. We hypoth-
esize that additional optimization on punctuation
restoration yields representations with increased
sensitivity to structure, measured by in-distribution
and out-of-distribution generalization performance
in structure-related NLP tasks.

Punctuation and capitalization restoration par-
tially overlaps with language modeling. However,
the task still remains nontrivial (Păiş and Tufiş,
2022; de Lima et al., 2024), and explicit optimiza-
tion would allow models to predict them without
explicit local context (e.g. beginning of sentence or

quotation).

2 Objective and experimental setup

2.1 Objective design
The PR objective predicts the original text from its
"cleared-formatting" counterpart. In our implemen-
tation, we remove the following set of punctuation
marks: the comma ,, the period ., the exclamation
point !, the question mark ?, the single-quotation
mark ’, and the double-quotation mark ", along
with capitalization, as shown below. Boldface in-
dicates an addition to or a modification of source
text.

• Source: lee faker sang-hyeok (hangul:이상혁)
is a league of legends esports player currently
mid laner and part owner at t1

• Target: Lee “Faker” Sang-hyeok (Hangul:이
상혁) is a League of Legends esports player,
currently mid laner and part owner at T1.

While it is possible that a different selection
yield better results, our selection reflects frequency
(Sun and Wang, 2019) as well as syntactic signifi-
cance (Bayraktar et al., 1998; Brabanter, 2023).

Similarly to popular pre-training objectives like
MLM, autoregressive language modeling, and next-
sentence prediction, the objective requires no hu-
man input. The objective is also architecture-
agnostic and can be easily modified as appropriate.

From an internal database of English news arti-
cles, accessed between January 2022 and August
2023, we collected a total of 437,031 article ex-
cerpts, which are non-overlapping parts separated
by a limiting word count of 150. One thousand ex-
cerpts each are used as the development and test
sets, while the remaining 435,031 excerpts are used
for training.

2.2 Experimental setup
Our experiments involve two stages. In the first
stage, we take the pre-trained weights of the T5-
base1 model (Raffel et al., 2019), and perform addi-
tional pre-training on the PR objective to produce
PR-T5. Then, in the second stage, we fine-tune
PR-T5 on downstream tasks and datasets.

In the first stage, the model f is given the
"cleared-formatting" token sequence x comprising
of tokens xt and optimized to predict the original,

1See Appendix C.1 for selection details and objective per-
formance



fully punctuated and capitalized text y comprising
of tokens yt as described in Section 2.1. However,
since there is textual overlap between x and y, as-
suming trivial copy error rate, we can write the
model f as a predictor of capitalization and punc-
tuation information mt = yt − xt:

mt = f(x, y<t) =


ϕ

addPunct(xt, θ)
addCap(xt, θ)

Thus, the effective loss is as follows:

L ≈ − 1

N

N∑
t=1

logP (mt | x, y<t) .

In the second stage, we fine-tune PR-T5 and mea-
sure the effects of punctuation restoration in down-
stream tasks. We measure effects across 13 datasets
that represent 7 tasks2 and across 3 settings: gener-
ative, discriminative , and multi-task. In the gener-
ative setting, fine-tuned PR-T5 makes entity or tag
predictions via autoregressive generation. We con-
duct 16 experiments in the generative setting, with
13 datasets from 7 tasks. In the multitask setting,
fine-tuned PR-T5 is trained to make predictions for
two tasks at once, namely NER and Open Infor-
mation Extraction (OpenIE). We conduct 1 experi-
ment in the multitask setting, with 2 datasets from
2 tasks. Generative and multitask predictions are
illustrated in Table 5. In the discriminative setting,
PR-T5’s decoder block is replaced with a classifica-
tion head, as described in Appendix A.1 and Figure
1. We conduct 1 experiment in the discriminative
setting, with 1 dataset from 1 task. We fine-tune
the publicly available pre-trained T5 weights on
the same downstream tasks and use their perfor-
mance as comparison baseline for all three settings.
We publicly release our architecture, training, and
inference code.

3 Results

We measure the effects of punctuation restoration
as an additional pre-training objective on down-
stream tasks on t5-base, with the four behaviors
outlined in Section 1 in mind. In this section, we
find direct evidence that this method helps mitigate
three out of four behaviors we describe in Section
1.

We report our results in Tables 1, 2, 3. Each re-
ported value of precision, recall, and F1 represents

2See Appendix B for task and dataset details

an average over the same 5 seed initializations,
with the exception of discriminative NER, where
we analyze 15 seed initializations.

3.1 Structure information encoding and use

In all 18 experiments across dataset, task, and set-
ting, PR-T5 reports improved performance over T5
baselines. Among them, 16 experiments report im-
provements ▲≥ .02, and 10 experiments ▲≥ .05
(Tables 1, 2, 3). This is evidence that punctuation
restoration makes available a nontrivial amount
of structure information that previously may have
been unavailable or underutilized, mitigating be-
havior 4 from Section 1.

3.2 Performance stability and
out-of-distribution generalization

An out-of-distribution evaluation measures perfor-
mance on a dataset that represents the same task
but comes from a different source than the training
dataset (e.g. evaluating on CaRB (Bhardwaj et al.,
2019) after fine-tuning on OIE2016 (Stanovsky and
Dagan, 2016)). It is an effective measure of robust-
ness of a representation, as fine-tuned models often
learn the dataset, rather than learning the task (Gu-
rurangan et al., 2018; McCoy et al., 2019; Serrano
et al., 2023). We compare out-of-distribution gener-
alization ability of PR-T5 to that of T5 in 5 exper-
iments across NER, OpenIE, Chunking, and POS
tagging, where we observe ▲≥ .05 increase in 4 of
them (Table 1). This is evidence that punctuation
restoration improves out-of-distribution generaliza-
tion, mitigating behavior 3 in Section 1.

In addition, we observe that punctuation restora-
tion reduces performance instability. Compared
to T5, PR-T5’s distribution of NER performance
across initialization seeds is narrower. Minimum-
maximum range (▼.04) and standard deviation
(▼23%) both decrease with additional pre-training
in PR, as reported in Table 3. The results sup-
port our hypothesis that punctuation restoration
increases stability across initialization seed and
training dataset order, mitigating behavior 2 dis-
cussed in Section 1.

4 Discussion

Results from Section 3 support our hypothesis that
complementing MLM with a more structure-related
objective improves structure understanding. In par-
ticular, we use a PR objective, described in Section
2 and evaluate with various structure-related tasks.

https://www.github.com/Aatlantise/punc-rest-improves
https://www.github.com/Aatlantise/punc-rest-improves


Task Training set Evaluation set t5-base + PR ∆

P R F1 P R F1 F1

NER Econ-mNER ID .69 .65 .67 .90 .89 .89 ▲.22
Econ-sNER .67 .76 .71 .74 .81 .77 ▲.06

GENIA ID .57 .73 .64 .64 .76 .69 ▲.05
CoNLL03 ID .89 .90 .89 .92 .92 .92 ▲.03
ontonotes ID .87 .88 .88 .91 .91 .91 ▲.03

OpenIE EconIE-PRO ID .47 .43 .45 .60 .63 .62 ▲.17
CaRB .22 .16 .19 .62 .42 .50 ▲.31

OIE2016 ID .16 .19 .18 .19 .19 .19 •.01
CaRB .10 .15 .12 .26 .27 .27 ▲.15

Chunking CoNLL00 ID .94 .94 .94 .96 .96 .96 ▲.02
CoNLL03 .41 .41 .41 .41 .42 .42 •.01

SRL CoNLL12 ID .75 .79 .77 .84 .86 .85 ▲.08

SBD PTB ID .97 .72 .81 .98 .98 .98 ▲.17

POS CoNLL00 ID .96 .96 .96 .98 .98 .98 ▲.02
CoNLL03 .74 .87 .79 .84 .88 .86 ▲.07

RE TACRED ID .67 .83 ▲.16

Table 1: Our main results where we compare t5-base model to PR-t5-base (+PR). ID denotes in-distribution
evaluation on a dataset from the same source as the training set. See Appendix B for dataset details.

t5-base (joint) + PR ∆

P R F1 P R F1 F1

NER .86 .84 .85 .87 .86 .87 ▲.02
OIE .57 .60 .58 .60 .62 .61 ▲.03

Table 2: Multitask (Econ-mNER, EconIE-PRO) perfor-
mance.

t5-base (EO) + PR ∆

P R F1 P R F1 F1

min .67 .91 .78 .74 .90 .82 ▲.04
max .88 . 94 .91 .90 .94 .91 •.00
avg .78 .93 .85 .83 .92 .88 ▲.03
sdev .061 .009 .035 .048 .010 .027 ▼.008

Table 3: Discriminative Econ-mNER performance.

While it is difficult to investigate the exact mech-
anism of how additional training on punctuation
restoration improves learned representations, we
attempt to provide an explanation.

In Section 1, we analyze that current methods
for representation learning during the pre-training
stage lack sufficient signal, and hypothesize addi-
tional training with a structure-sensitive objective
should improve structure understanding. Much like
how prosody helps disambiguate syntax in human
speech processing (Price et al., 1991; Kahn et al.,
2005), punctuation can be a useful guide in syntax
disambiguation, and eventually toward forming a

robust representation of text. Punctuation marks
often indicate syntactic or semantic boundaries
(Briscoe, 1996; Bayraktar et al., 1998). Optimiz-
ing a computational system to predict punctuation
allows it to predict syntactic and semantic bound-
aries, even in the absence of punctuation in the
original text. Sufficient training in restoring punc-
tuation can imitate effects of explicitly providing a
parse, facilitating natural language understanding
via a stronger understanding of sentence structure.

Performance improvement from PR is not lim-
ited to a specific dataset, task, and setting3. and
represents an overall increase in representation ro-
bustness, as we observe out-of-distribution perfor-
mance jump in NER, OpenIE, and chunking. Be-
cause of the wide range of experiments in which
improvement is observed, we interpret this to be
a general improvement of structure understanding
rather than fortunate task-specific artifacts from the
additional training.

Our methods yield a more reliable and robust
representation that can be easily implemented and
do not interfere with architectural additions. PR
can be applied to reinforce structure understanding
and improve robustness of learned representations
regardless of model choice, or task-specific engi-
neering policy. The effective objective requires no
supervision, and one can construct a training corpus
with little computational or manual resources.

3And decoding method, discussed in Appendix B



Limitations

The idea of structure understanding reinforcement
via punctuation restoration is still young–many de-
cisions relevant to the learning objective in this
paper, including selection of punctuation marks
and source of learning corpus warrant additional
investigation in future work. Our set of training
hyper-parameters also will benefit from additional
attention.

Among the 4 behaviors discussed in Section 1,
we find direct evidence that punctuation restoration
mitigates only three of them. While we predict that
unsupervised structure learning via objectives like
PR can help mitigate the reversal (factorization)
curse, this will need explicit verification.

While our experiments show promise in base-
sized NLU models for English, its effects in larger
models, implications to generative or conversa-
tional systems, and generalization to other lan-
guages and thus language-agnostic nature also need
to be verified.

It is also likely that punctuation restoration is
not the only unsupervised learning objective that
can be used to improve the representation learn-
ing stage of training NLP systems. Other forms
of unsupervised structure learning, possibly sim-
pler and more effective methods than punctuation
restoration, as well as optimizations on objective
combination (e.g. with word prediction methods)
should be studied in future work.

Responsible research statement

We use OpenAI’s GPT-3.5 Turbo (Brown et al.,
2020) as a punctuation restoration performance
baseline, and as a debugging assistant during the
project’s technical implementation.

The Econ-mNER dataset was annotated by
paid, full-time employees who are trained linguists
knowledgeable about their work and the dataset’s
downstream use. They are compensated similarly
to the region’s 2021 median income level. Their
work has been reviewed by an internal board to
not contain any personally identifiable information.
Other internal datasets did not require manual an-
notation.
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Vasile Păiş and Dan Tufiş. 2022. Capitalization and
punctuation restoration: a survey. Artificial Intelli-
gence Review, 55(3):1681–1722.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unrestricted
coreference in OntoNotes. In Joint Conference on
EMNLP and CoNLL - Shared Task, pages 1–40, Jeju
Island, Korea. Association for Computational Lin-
guistics.

Patti J Price, Mari Ostendorf, Stefanie Shattuck-
Hufnagel, and Cynthia Fong. 1991. The use of
prosody in syntactic disambiguation. the Journal of
the Acoustical Society of America, 90(6):2956–2970.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Devendra Sachan, Yuhao Zhang, Peng Qi, and
William L Hamilton. 2021. Do syntax trees help
pre-trained transformers extract information? In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2647–2661.

Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro,
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A Additional details on experimental
setup

We train the model on the punctuation restoration
objective for 40 epochs, before fine-tuning with su-
pervised datasets for downstream tasks. The exper-
iments are run on a single V100 GPU with 32GB
VRAM, with half precision and gradient accumula-
tion enabled at 16. Our choice of hyper-parameters

are as follows: batch size 32, maximum sequence
length 256, learning rate 3e-4, maximum grad norm
0.5, and Adam epsilon 1e-8. Number of fine-tuning
epochs was 10, with the exception of SRL, which
is fine-tuned for 1 epoch only. The additional pre-
training lasts about 2 weeks, while the length of
each epoch of training varies across datasets be-
tween 10 minutes and around 2 hours.

A.1 Discriminative approach

While there exist sophisticated attempts to incor-
porate the decoder layers in producing a discrimi-
native model from a pre-trained encoder-decoder
architecture (Liu et al., 2022), we use a simple ar-
chitecture where we forgo the decoder block and
place a T5ClassificationHead on top of the en-
coder block of the T5 model. That is, we take the
hidden state output from model’s encoder and use it
as input to the classification head. An illustration of
the model architecture is shown in Figure 1. After
additional pre-training on punctuation restoration
objective, the decoder block of the t5-base model
is removed and a newly initialized classification
head is placed on top of the encoder block. The
architecture is comparable to those of BERT-like
encoder-only models. Even by retaining weights
from the encoder blocks only, we observe that ad-
ditional unsupervised structure learning via punc-
tuation restoration results in downstream task per-
formance improvement.

A.2 Joint multitask generative approach

The joint multitask approach, where we focus on
open information extraction using the EconIE-PRO
dataset and NER using the Econ-mNER dataset, is
similar to the generative approach. The input se-
quence is identical to the experiments from Section
3, but the output sequence is a concatenation of out-
put sequences from the two datasets, as illustrated
in Table 5.

Model architecture P R F1

ChatGPT 0-shot* .75 .71 .73
t5-small .91 .86 .88
t5-base .93 .92 .93
t5-large .94 .93 .93

Table 4: Punctuation restoration performance after 50
epochs (small), 40 epochs (base), and 20 epochs (large)
of training respectively. *Measured on a small subset of
the punctuation restoration evaluation dataset.
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T5ClassificationHead

(Faker: PER)
(T1: ORG)

B-PER O O O O O O O O O O O O O O B-ORG

(Faker, is, a League of Legends esports player)
(Faker, is mid laner and part owner at, T1)

Linear (LM head)

T5Block (decoder)

T5Block (encoder)

(b)

Faker is a League of Legends esports player, 
currently mid laner and part owner at T1

T5Block (encoder)

Faker is a League of Legends esports player, 
currently mid laner and part owner at T1

(a)

Figure 1: (a) The t5 architecture for a generative, text-to-text approach to NLP tasks. Here, we illustrate open
information extraction. (b) A modification to the t5 architecture to allow a discriminative approach to NLP tasks.
Here, we illustrate named entity recognition.

B Additional details on dataset

We use a suite of structure-related NLP tasks to
measure model structure understanding. Relevant
tasks include named entity recognition (NER), sen-
tence boundary detection (SBD), open information
extraction (OpenIE), chunking, semantic role la-
beling (SRL), part-of-speech tagging, and relation
classification. Our selection mostly follows that
from Wang et al. (2021) and Lee et al. (2024). We
use both public and internal datasets, and check for
in- and out-of-distribution generalization. A full
list of datasets for each task is shown in Table 6. In
the main body of the paper, we discuss effects of
PR across task, dataset, and setting. Here, we dis-
cuss another variable across which PR is effective:
decoding method.

B.1 Entity generation tasks

NER, OpenIE, SRL, and relation classification
are entity generation tasks, where fine-tuned mod-
els autoregressively generate entity objects. For
example, (Faker: PER), (Faker, is, a
League of Legends esports player), (Faker,
employeeAt, T1) are NER, OpenIE, and relation
classification examples, respectively. The order in
which entities are generated does not affect evalua-
tion in the case of entity generation tasks.

Source Faker is a League of Legends esports player,
currently mid laner and part owner at T1.

OpenIE (Faker, is, a League of Legends esports player)
(Faker, is mid laner and part owner at, T1)

NER (Faker: PER) (T1: ORG)
Multitask (Faker: PER)

(Faker, is, a League of Legends esports player)
(Faker, is mid laner and part owner at, T1)
(T1: ORG)

Table 5: Example output from generative NER, OpenIE,
and multitask models.

B.2 Tag sequence generation tasks

Chunking and POS tagging are tag sequence
generation tasks, where fine-tuned models auto-
regressively generate tag sequences. "NP VP ADVP
PP NP NP NP" and "NP VBZ DT NP IN NP" are
example sequences of chunking and POS tagging,
respectively.

B.3 Sequence generation tasks

Punctuation restoration and sentence boundary de-
tection are sequence generation tasks. Fine-tuned
models auto-regressively generate natural text se-
quences, with predefined tags to perform the task.
For example, a sentence boundary detection model
would generate a [<s>] token between sentences,
given a passage.



Task Dataset Source Task type

Internal datasets

PR finPR Rule-based tagging on finance news Seq. gen.
NER Econ-mNER Manual tagging on finance news and corporate filings Ent. gen., Tok. cls.

Econ-sNER Semi-supervised tagging on finance news Ent. gen.
OpenIE EconIE-PRO Rule-based tagging on finance news, predicate range optimized Ent. gen.

Public datasets

NER GENIA Kim et al. (2003) Ent. gen.
CoNLL 2003 Tjong Kim Sang and De Meulder (2003) Ent. gen.
ontonotes Weischedel et al. (2013) Ent. gen.

SBD PTB Marcus et al. (1993) Seq. gen.
OpenIE OIE2016 Stanovsky and Dagan (2016) Ent. gen.

CaRB Bhardwaj et al. (2019) Ent. gen.
Chunk, POS CoNLL 2000 Tjong Kim Sang and Buchholz (2000) Tag gen.

CoNLL 2003 Tjong Kim Sang and De Meulder (2003) Tag gen.
SRL CoNLL 2012 Pradhan et al. (2012) Ent. gen.
ORE TACRED Zhang et al. (2017) Ent. gen.

Table 6: We use a total of 14 datasets across 8 tasks, including punctuation restoration. Four are internal datasets,
while the rest are publicly available.

B.4 Token classification tasks

NER in the discriminative setting is a token classi-
fication task. Given a sentence of length n, the fine-
tuned model outputs an array of length n, each ele-
ment of which represents whether its corresponding
token is part of a named entity. For example, one
from a tag set such as [O, B-PER, I-PER, B-LOC,
I-LOC, B-ORG, I-ORG], as illustrated in Figure
1.

C Additional details on results

In our results, improvements from PR persist across
decoding methods–entity generation in NER, Ope-
nIE, SRL, and relation classification; tag sequence
generation in chunking and POS tagging; sequence
generation in sentence boundary detection; and to-
ken classification in discriminative NER.

C.1 Objective results

Punctuation restoration is no trivial task (Gravano
et al., 2009; Alam et al., 2020). Should our hypoth-
esis hold, it is likely that syntactic signals from
punctuation restoration transfer more effectively in
models with stronger punctuation restoration per-
formances. We experiment with three sizes of the
T5 architecture. We consider t5-small, t5-base,
and t5-large. Table 4 includes their punctuation
restoration performance, in addition to ChatGPT’s
(Brown et al., 2020) zero-shot performance as a
reference point, which shows that the objective is

nontrivial.
Across the T5 models, there is some correla-

tion between size and punctuation restoration per-
formance. Because the performance gap between
t5-base and t5-large models is small (•.00),
while gap between t5-small and t5-base more
significant (▲.05), we use the t5-base model for
our experiments.

We also note that our selection of the T5 model
is due to its ability to perform both generative and
discriminative tasks after single pre-training.

C.2 Joint multitask generative setting

Similarly to the generative approach, we observe
that additional unsupervised structure learning
via punctuation restoration results in downstream
task performance improvement (▲.02 NER and
▲.03 OpenIE). While PR-T5 multi-task perfor-
mance slightly degrades compared to its single-
task generative setting (▼.02 NER and •.01 Ope-
nIE), multitask-T5 outperforms single task-T5
on EconIE-PRO, an open information extraction
dataset (▲.13).

C.3 Discriminative setting

Given the results from the single-task generative ap-
proach, the transfer from punctuation restoration to
multi-task generative approach may be no big sur-
prise, as there is no drastic difference between the
generative nature of the two approaches. However,
we report that our improved representations from



punctuation restoration non-trivially transfers to the
discriminative approach as well, where the decoder
block is removed from the model, as illustrated in
Figure 1. Although the maximum performance for
T5 and PR-T5 are similar at .91 (•.00), there is a
significant difference in the minimum, at .78 and
.82, respectively (▲.04). Punctuation restoration re-
sults in not only higher performance, but also more
consistent and stable sets across different initializa-
tions.


