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In this paper, we explore the quantum-electronic properties of graphene, introduce

the quantum mechanical foundation which describes graphene, study the electronic

band structure of graphene to derive and discuss its ”massless Dirac Fermion.”

I. BACKGROUND AND MOTIVATION

A. Graphene

In 2010, Andre Geim and Konstantin Novoselov (Figure 1) won the Nobel Prize in Physics

for their research on graphene, or as they call it, the flatland [5]. They have successfully

produced, isolated, identified, and characterized this two dimensional crystalline material,

a single atomic layer of carbon. Graphene has interesting and unique properties [6]. Its

electronic properties produces an unusual quantum Hall effect [1], is a transparent conductor,

suggests implications in particle physics involving an exotic type of tunneling. It is also

mechanically interesting, with much more strength than steel, stiffer than diamond, and

has the greatest elasticity of any crystal. It thermally and electrically conducts, and so can

function as a flexible conductor [6].

Graphene is particularly exciting as a material because it is a two-dimensional material.

A suspended sheet of pure graphene consists of a planar layer of carbon atoms bonded

in a honeycomb lattice [3]. Carbon atoms can form many different structures other than

graphene; this includes graphite, carbon nanotubes, and fullerenes (the Bucky Ball being a

well known example). Geim and Novoselov, as part of their Nobel prize winning research,

successfully produced the two-dimensional structure known as graphene. As a result of

its structure, graphene was suspected to have a particularly interesting electronic band

structure, which we will study in section II A.
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FIG. 1: Andre Geim and Konstantin Novoselov, winners of 2010 Nobel Prize in Physics

B. Dirac Equation

Paul Dirac derived his relativistic wave equation (known as the Dirac Equation) in 1928.

The description of special relativity in quantum mechanics had some interesting implications,

including the existence of antimatter, and further applications in quantum field theory [8].

The standard derivation for the relativistic correction of quantum mechanics begins by

describing the Hamiltonian eigen-equation as

Ĥ|Ψ〉 = E|Ψ〉 =
√
c2p2 +m2c4|Ψ〉 (1)

It is interesting to see how, from this equation, and the relations Ĥ = −i~ d
dt

, and p̂ =

−i~∇, we may get the Klein-Gordon equation

(
1

c2
d2

dt2
−∇2 +

m2c2

~2
)|Ψ〉 = 0 (2)

Under a different formulation we may demand that Ĥ|Ψ〉 = K̂|Ψ〉, where K̂2 = c2p̂2 +

m2c4. In this way we may define a relation such that

K̂ = c~α · ~̂p+ βmc2 (3)
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From this it is easy to see that the elements ~α and β can not be complex numbers, for this

would require either ~α or β to be zero, which won’t give us a satisfying solution. Therefore

we treat ~α and β as matrices. Continuing with the derivation we get

K̂2 = [c
∑
i

αipi + βmc2][c
∑
j

αjpj + βmc2]

=
c2

2

∑
i

∑
j

(αiαj + αjαi)pipj + β2m2c4 + ...

(4)

This formulation requires that

β2 = 1

αiβ + βαj = 0

αiαj + αjαi = 2δij

which, as you can see, are several anti-commutation relations defining the structure of

our relativistically corrected kinetic energy. References to these relations generally use the

term Dirac Algebra or Clifford Algebra [7]. Now, given that Ĥ is a Hermitian operator, for

our system to be consistent, ~α and β must also be Hermitian operators. This places the

constraint on our matrices that they must have even dimensions (easily verified by seeing

that the trace of αi and β must equal zero). This leaves us the job of finding satisfying

matrix descriptions. If we begin by attempting to find matrices of dimension 2x2 we recover

the Pauli-Spin matrices. These satisfy Dirac Algebra, but are not sufficient for our purposes.

Instead we look to 4x4 matrices which results in the matrix formulation shown in figure 2

where γ0 is β, and γ1, γ2, and γ3 are the three matrices for ~α. We are now equipped to

state fully the Dirac Equation

(c
3∑
i=1

αipi + βmc2)|Ψ(x, t)〉 = i~
δ

δt
|Ψ(x, t)〉 (5)

For our purposes we will be using the Dirac Equation to discuss electrons in graphene.

The Dirac Equation in matrix form appears in figure 3.

II. MAIN RESULTS

We will first follow Leggett’s lecture to derive massless Dirac fermions from graphene, in

section II A and then discuss it in section II B.
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FIG. 2: The Dirac Matrices, also know as gamma matrices.

FIG. 3: Fully expanded matrix form of the Dirac Equation.

A. Electronic Band Structure of Graphene

Here, we first consider a perfectly flat and isolated sheet of graphene, as shown in figure 4.

In graphene, carbon atoms, whose electronic structure is (1s)2(2s)2(2p)4, hybridize to form

three sp2 orbitals, and arrange themselves in a planar, honeycomb lattice form, forming 120◦

angles.

Note here that the structure includes two inequivalent sublattices, labeled A and B in

figure 4, which are mirror images of one another. It is convenient to choose lattice vectors

a1 and a2, also shown in figure 4, as

a1 =
a

2
(3,
√

3), a2 =
a

2
(3,−

√
3) (6)

where a corresponds to the closest C-C spacing, (≈ 1.42Å). Then, the reciprocal lattice

vectors b1 and b2 which is given by ai · bj = 2πδij are

b1 =
2π

3a
(1,
√

3), b2 =
2π

3a
(1,−

√
3). (7)

Next, we define the first Brillouin zone (FBZ) of the reciprocal lattice, as bounded by planes
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FIG. 4: Isolated flat graphene and its primitive lattice vectors [3].

FIG. 5: A first Brillouin zone of the reciprocal lattice, with two equivalent corners K and K ′ [3].

bisecting the vectors to the nearest reciprocal lattice points. With this, we have a FBZ

in the form of the original hexagons of the honeycomb lattice rotated by π/2, as shown in

5. The six corners are three sets of two equivalents, so without loss of generality we only

consider two equivalent corners, K and K ′, whose momentum-space positions are given by

K =
2π

3a
(1,

1√
3

), K′ =
2π

3a
(1,− 1√

3
). (8)

In addition, we note here that the three nearest-neighbor vectors in position space for

sublattice A, denoted δ1, δ2, and δ4, and shown in figure 4, are given by
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FIG. 6: Visualization of positions used in equation 11 [3].

δ1 =
a

2
(1,
√

3), δ2 =
a

2
(1,−

√
3), δ3 = −a(1, 0) (9)

while the vectors are given with opposite signs for sublattice B.

We first model the electronic band structure, with nearest-neighbor hopping only, with

tight-binding Hamiltonian

ĤTB,n.n. = −t
∑
ij=n.n.

(a†iσbjσ +H.c.) (10)

and TB eigenfunctions of form

 αk
βk

 =
∑
i

expik ·R0
i

 a†ie−ik·δ1/2
b†ie

ik·δ1/2

 , (11)

where R0
i is a reference point, arbitrarily chosen to be at A, B separated from A by δ1, and

b†i creates an electron on the B atom on cell i, illustrated in figure 6.

Now, the resulting Hamiltonian is purely off-diagonal in the k-representation:

Ĥk =

 0 ∆k

∆∗k 0

 , ∆k ≡ −t
3∑
l=1

expik · δl, (12)

and combining with the nearest-neighbor vectors in equation 9, we get explicitly

∆k = −texp− ikxa(1 + 2exp(i
3kxa

2
)cos

√
3

2
kya) (13)

and eigenvalues of the Hamiltonian is εk = ±|∆k|.

Here, we consider if there are values of k for which ∆k = 0 (or equivalently, εk = 0):
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3kxa

2
= 2nπ, cos

√
3

2
kya = −1/2 (n = 0,±1,±2, ...)

or
3kxa

2
= (2n+ 1)π, cos

√
3

2
kya = 1/2.

(14)

The second set of equations are satisfied at the equivalent corner points K and K ′, as

described in figure 5. They are called ”Dirac points”. One takeaway point from this is

that given the symmetry of energy band about the point εk = 0, and that this condition is

satisfied at two Dirac point, as opposed to a metal, whose complete surface of k-values meet

the condition. Thus, for exactly half filling of the band, the density of states at the Fermi

level is exactly zero. Also, in the absence of doping graphene has exactly one electron per

spin per atom, so taking spin into account, the band is exactly half filled. Thus, undoped

graphene is a perfect semimetal!

Now, we discuss energy spectrum and eigenfunctions for k close to a Dirac point. Without

loss of generality, we can pick the point K. First we define q = k−K, and expanding the

expression for ∆k around q=0, we have

∆(q)− ' 2teiKxaq · ∇k(e3ikxa/2cos

√
3

2
kya)k=K = −3ta

2
(exp− iKxa)(iqx − qy). (15)

Extracting an overall constant factor −iexp− iKxa, we get

∆((q)) = ~vF (qx − iqy)(1 +O(q/K)2), vF ≡ 3ta/2~ ∼= 106m/sec. (16)

Now, it is suggestive to write the Hamiltonian in the following way:

Ĥ = ~vF

 0 qx + iqy

qx − iqy 0

 ≡ ~vF σ̂ · q, ε(q) = ±vF |q|, (17)

where σ̂ is an operator whose components are Pauli matrices. Formally speaking, Hamilto-

nian 17 represents a massless particle of spin 1/2, such as the neutrino, with c replaced with

Fermi velocity vF . Thus, graphene produces an analog to particle physics in a solid-state

context, as anticipated in section I A [3].
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B. Graphene and Massless Dirac Fermions

Touched on briefly in section II A, we may consider how massless Dirac fermions emerge

from the graphene structure. A full description is aptly given by Jean-Noel Fuchs in his

work on Dirac fermions [9]. Essentially, within the honeycomb lattice each carbon shares

a σ bond with its neighbors, leaving a single conduction electron. It is because of this

electron that a Hilbert space may be constructed (from the carbon 2pz orbitals). The

Hamiltonian in sublattice subspace emerges as a 2-dimensional Dirac Hamiltonian. In the

Weyl representation this Hamiltonian appears as

H±D = vF (±αxpx + αypy) (18)

where vF is the Fermi velocity (≈ c/300).

FIG. 7: Shows the tight-binding band structure of graphene with an overlay showing fermion

energy. The zoomed picture shows the linear dispersion of massless Dirac fermions. Credit: Fuchs,

J. [9]

.

C. Remaining questions

· What is the first Brillouin zone and what is its significance?

· What does it mean that for exactly half filling of the band the density of states at the

Fermi level is exactly zero?

· What is graphene doping?
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D. Further Thoughts and Future of Graphene

One of the most compelling aspects of graphene is how it might be applied in materials

engineering. The unique quantum mechanical nature of graphene not only makes it a fasci-

nating structure to work with theoretically and experimentally but also in its applications

to technology. It seems likely that the the rapid magneto-transport property of graphene

would lead to some interesting applications in electronic devices. Even when not considering

the quantum-electric properties, its’ mechanical uses due its light weight, its flexibility, and

durability makes it ideal for use in a new generation of practical every day technologies.

In addition, as graphene was ”hidden” as fullerenes and nanotubes [3], there may be

countless possibilities in manipulating flat graphene into different shapes for different pur-

poses, especially with its flexibility and durability.

Its relevance to the field of physics will likely extend through several decades as its

deeper nature is probed, and is adapted to explore more complex systems that are difficult

to describe theoretically. Put in another way, solutions to the Dirac equation may not always

be found in a sufficiently complex system, but experimental results may still be applicable

when physicists may compare and contrast the properties between graphene and the more

complex extension of that system.
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