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Abstract

Unsupervised learning objectives like language
modeling and de-noising constitute a signifi-
cant part in producing pre-trained models that
perform various downstream applications from
natural language understanding to conversa-
tional tasks. However, despite impressive gen-
erative capabilities of recent large language
models, their abilities to capture syntactic or
semantic structure within text lag behind. We
hypothesize that the mismatch between linguis-
tic performance and competence in machines
is attributable to insufficient transfer of linguis-
tic structure knowledge to computational sys-
tems with currently popular pre-training objec-
tives. We show that punctuation restoration as
a learning objective improves in- and out-of-
distribution performance on structure-related
tasks like named entity recognition, open in-
formation extraction, chunking, and part-of-
speech tagging. Punctuation restoration is an
effective learning objective that can improve
structure understanding and yield a more ro-
bust structure-aware representations of natural
language.

1 Introduction

The current framework of natural language pro-
cessing systems, described by Linzen (2020) as the
PAID paradigm, consists of two production stages:
unsupervised representation learning and task-
specific engineering. Modern transformer-based
systems that follow the framework (Devlin et al.,
2019; Raffel et al., 2019; Radford et al., 2018; Pe-
ters et al., 2018) report high performance in var-
ious natural language understanding tasks, often
matching or exceeding human performance base-
lines (Wang et al., 2018, 2019). However, there is
ample evidence that current unsupervised represen-
tation learning yields weak structure understand-
ing and brittle generalization abilities. In classifica-
tion systems, we observe unstable outcome despite
consistent input and reliance on shallow heuristics

while processing unfamiliar input (McCoy et al.,
2020b; Zhou et al., 2020). In generative and con-
versational systems, we observe stagnant natural
language understanding performance despite dras-
tic increase in conversational performance (Zhong
et al., 2023), and failure to generalize sentences
like "A equals B" to "B equals A" (Berglund et al.,
2023).

These are examples of weak structure under-
standing in language model based NLP systems.
While it is difficult to pinpoint the exact source of
these weaknesses or even disentangle between the
effects of unsupervised pre-training and task spe-
cific engineering, the pre-training stage is at least
partially attributable for these behaviors, and there
exists room for improvement (Zhou et al., 2020;
Min et al., 2020). We believe word prediction tasks
like auto-regressive (Radford et al., 2018), masked
(Devlin et al., 2019), and perturbed (Raffel et al.,
2019) language modeling may be insufficient to
acquire robust representations that contain strong
understanding of syntactic and semantic structure.
We hypothesize that an additional unsupervised
learning objective that focuses on capturing struc-
ture within natural language will improve structure
understanding, measured by in-distribution (test set
from the same source as training set) and out-of-
distribution (test set from a different source than
training set) performance in structure-related NLP
tasks like chunking, information extraction, seman-
tic role labeling, named entity recognition, sentence
boundary detection, and part-of-speech tagging.

This paper aims to test this hypothesis, using
an unsupervised learning objective that reinforces
structure understanding in language models. One
nontrivial signal for syntactic and semantic struc-
ture in natural language is punctuation (Briscoe,
1996; Nunberg, 1990; Dale, 1991), which can also
be an effective parsing constraint that aids grammar
induction in web mark-up text (Spitkovsky et al.,
2010). During human speech processing, syntactic



disambiguation and grammar induction are facil-
itated by prosody (Kahn et al., 2005; Price et al.,
1991), which is analogous to punctuation in writ-
ten text. Previously, punctuation has been used for
grammar induction to improve unsupervised depen-
dency parsing (Spitkovsky et al., 2011). Punctua-
tion restoration is itself also a popular downstream
task, especially for polishing output text from auto-
matic speech recognition systems (Gravano et al.,
2009; Alam et al., 2020, inter alia) but has not
been studied as a transferable language modeling
objective.

Here, we propose punctuation restoration as the
structure-oriented learning objective, which we de-
scribe in detail in Section 3. Our results show ad-
ditional pre-training with the punctuation restora-
tion objective leads to improvements in various
structure-related NLP task performance in both dis-
criminative and generative approaches, supporting
our hypothesis. Furthermore, this finding suggests
that there is room for improvement in the unsuper-
vised pre-training stage in the current paradigm of
producing natural language processing systems.

Our contribution is twofold:

1. We suggest a novel research direction in un-
supervised transfer learning beyond word pre-
diction

2. We propose an unsupervised learning objec-
tive that yields robust structure understanding

2 Structure understanding

Understanding of language structure is vital in both
human and machine language processing. While
human language acquisition and modern machine
representation learning take a similar approach–
acquisition of structure via implicit structural sig-
nals in an unsupervised setting, their outcomes are
different, highlighted by poor generalization abili-
ties and high computational costs of machine lan-
guage processing systems.

2.1 Human acquisition of structure
understanding

Despite the unsupervised and sparse nature of their
linguistic stimuli, human learners are able to obtain
robust representations that generalize to unfamil-
iar inputs reliably and with remarkable efficiency.
Braine et al. (1971) provide a plethora of examples
where children do not respond to negative rein-
forcement in their corpus. However, even without

explicit supervision, humans are able to generalize
their linguistics knowledge to novel structures and
utterances (Sprouse et al., 2013). Moreover, this
is accomplished with remarkable efficiency–Roy
et al. (2015) analyze that children hear or produce
approximately 8 million words over a 15-month
period, which amounts to around 13-14 million to-
kens. Linzen (2020) acknowledges that NLP tasks
or languages with a similar range of available data
are often dubbed "low-resource."

2.2 Pre-training to acquire structure
understanding

Computational systems struggle to obtain reliable
representations of structure, given their lack of
human-like inductive bias (Linzen et al., 2016; Mc-
Coy et al., 2020a). Modern language models pro-
pose word prediction objectives for representation
learning–they acquire natural language representa-
tion by predicting words that are most likely to ap-
pear in the masked, perturbed, or next-in-sequence
slot (Devlin et al., 2019; Raffel et al., 2019; Rad-
ford et al., 2018; Yang et al., 2020). BERT (Devlin
et al., 2019) employs masked language modeling,
where random words in a sentence are masked, and
the model is tasked with predicting those masked
tokens. The Text-to-Text Transfer Transformer (T5;
Raffel et al., 2019) utilizes a de-noising objective,
where a portion of input sentences is corrupted,
and the model is trained to reconstruct the original
text. ELECTRA (Clark et al., 2020) introduces a
novel approach through corruption classification,
where a subset of tokens is replaced with incorrect
ones, and the model distinguishes between genuine
and corrupted tokens. The Generative Pre-trained
Transformer (GPT; Radford et al., 2018) employs
an auto-regressive language modeling objective,
predicting the next word in a sequence given the
preceding context.

2.3 Other methods for structure
understanding

In addition to structure learning during the pre-
training stage, various work suggest methods appli-
cable after it. Approaches related to dataset adjust-
ment account for a significant portion. Gunasekar
et al. (2023) observe that training on textbook qual-
ity data reduces the need for scaling while main-
taining performance. Yaghoobzadeh et al. (2021)
proposes recursion on forgettable examples to curb
system reliance on spurious correlations and focus
on syntactic and semantic signal. Min et al. (2020)



introduce a simple yet effective human-in-the-loop
adversarial augmentation framework that improves
general syntactic structure understanding. Clark
et al. (2019) suggest performing "additional pre-
training" on the supervised Multi-Genre Natural
Language Inference dataset (Williams et al., 2018)
transfers cross-sentence structure understanding
and thus improves downstream performance on
their Boolean QA dataset. Other efforts include aug-
menting input explicitly with syntax by providing
constituency or dependency parsing information
(Pradhan et al., 2005; Zhang et al., 2019; Lepori
et al., 2020) or via joint inference (Punyakanok
et al., 2008), detecting a domain-specialized sub-
span of input text to process them separately (Park
et al., 2023), and increasing retrieval relevancy by
applying additional constraints to encourage learn-
ing and prediction of task-specific input-output
structure (Lee et al., 2024). We also note methods
that facilitate distillation of structural knowledge
from a more robust teacher model, such as attention
alignment during distillation (Jin et al., 2024).

3 Objective design and experimental
setup

3.1 Objective design
The punctuation restoration objective predicts
cleared punctuation marks and capitalization. In
our implementation, we predict the following set of
punctuation marks: the comma ,, the period ., the
single-quotation mark ’, and the double-quotation
mark ", along with capitalization, as shown below.
Boldface indicates an addition or a modification of
source text.

• Source: lee faker sang-hyeok (hangul:이상혁)
is a league of legends esports player currently
mid laner and part owner at t1

• Target: Lee “Faker” Sang-hyeok (Hangul:이
상혁) is a League of Legends esports player,
currently mid laner and part owner at T1.

We do not introduce mask tokens that trigger
predictions, because we want the learners to be
able to infer punctuation marks and capitalization
(and hence language structure) from raw text only.
We also acknowledge our selection of punctuation
marks to restore is arbitrary, and it is possible that
a different selection yield better results.

From an internal database of English news arti-
cles, accessed between January 2022 and August

2023, we collected a total of 437,031 article ex-
cerpts, which are non-overlapping parts separated
by a limiting word count of 150. Sources include
major news outlets like CNN and Reuters. One
thousand excerpts each are used as the develop-
ment and test sets, while the remaining 435,031
excerpts are used for training.

The raw excerpts serve as target text. To cre-
ate source text, we first normalize punctuation
marks, then remove our four selected punctuation
marks, then apply the .lowercase() transforma-
tion. While we intend to produce a training dataset
entirely in English, we did not check for this, and
it is possible the training data include non-English
words, phrases, or articles.

3.2 Experimental setup

We treat punctuation restoration as additional train-
ing before fine-tuning on the target datasets. We
experiment with three approaches–a single-task
generative approach with the conditional language
modeling head, a joint multi-task generative ap-
proach, and a discriminative approach with a clas-
sification head. For all approaches, we use the
publicly available t5-base model architecture
and checkpoint from Hugging Face Transformers’
T5ForConditionalGeneration module.

We train the model on the punctuation restora-
tion objective for 40 epochs, before fine-tuning
with supervised datasets for downstream tasks. The
experiments are run on a single V100 GPU with
32GB RAM, with half precision and gradient ac-
cumulation enabled at 16. Our arbitrary choice
of hyper-parameters are as follows: batch size 32,
maximum sequence length 256, learning rate 3e-
4, maximum grad norm 0.5, and Adam epsilon
1e-8. Number of fine-tuning epochs was 10, with
the exception of SRL, which is fine-tuned for 1
epoch only. The additional pre-training lasts about
2 weeks, while the length of each epoch of train-
ing varies across datasets between 10 minutes and
around 2 hours.

We follow Raffel et al. (2019)’s framework of
transfer learning in text-to-text tasks for the gener-
ative approach and Radford et al. (2018)’s frame-
work of generative pre-training followed by dis-
criminative fine-tuning for the discriminative ap-
proach. Unlike the generative approach, the dis-
criminative approach requires some modification
from the original T5 implementation, illustrated in
Figure 1.
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Figure 1: (a) The t5 architecture for a generative, text-to-text approach to NLP tasks. Here, we illustrate open
information extraction. (b) A modification to the t5 architecture to allow a discriminative approach to NLP tasks.
Here, we illustrate named entity recognition.

3.2.1 Discriminative approach
While there exist sophisticated attempts to incor-
porate the decoder layers in producing a discrimi-
native model from a pre-trained encoder-decoder
architecture (Liu et al., 2022), we use a simple ar-
chitecture where we forgo the decoder block and
place a T5ClassificationHead on top of the en-
coder block of the T5 model. That is, we take the
hidden state output from model’s encoder and use
it as input to the classification head. An illustration
of the model architecture is shown in Figure 1.

3.3 Evaluation datasets

We use a suite of structure-related NLP tasks to
measure model structure understanding. Relevant
tasks include named entity recognition (NER), sen-
tence boundary detection (SBD), open informa-
tion extraction (OpenIE), chunking, semantic role
labeling (SRL), part-of-speech tagging, and rela-
tion classification. We use both public and internal
datasets, and check for in- and out-of-distribution
generalization. A full list of datasets for each task
is shown in Table 1.

4 Results

We measure the effects of punctuation restora-
tion as an addition pre-training objective on struc-
ture understanding abilities across in- and out-of-
distribution performance in datasets described in
Table 1. We report the results in various settings,

including the generative approach following Raf-
fel et al. (2019) in Section 4.2, the joint multitask
approach in Section 4.3, and the discriminative ap-
proach following Devlin et al. (2019) in Section
4.4.

4.1 Objective results

Punctuation restoration is no trivial task (Gravano
et al., 2009; Alam et al., 2020). Should our hypoth-
esis hold, it is likely that syntactic signals from
punctuation restoration transfer more effectively in
models with stronger punctuation restoration per-
formances. We experiment with three sizes of the
T5 architecture–small, base, and large to help de-
termine our experimental setup. Table 2 includes
their punctuation restoration performance, in addi-
tion to ChatGPT’s (Brown et al., 2020) zero-shot
performance as a reference point, which shows that
the objective is nontrivial.

Across the T5 models, there is some correla-
tion between size and punctuation restoration per-
formance. Because the performance gap between
t5-base and t5-large models is small, we use
the t5-base model for our experiments.

4.2 Generative approach

Table 3 contains an overview of model performance
on various structure related tasks with and without
additional training on punctuation restoration. Each
task performance represents an average over 5 runs.



Task Dataset Source

Internal datasets

PR finPR Rule-based tagging on finance news
NER Econ-mNER Manual tagging on finance news and corporate filings

Econ-sNER Semi-supervised tagging on finance news
OpenIE EconIE-PRO Rule-based tagging on finance news, predicate range optimized

Public datasets

NER GENIA Kim et al. (2003)
CoNLL 2003 Tjong Kim Sang and De Meulder (2003)
ontonotes Weischedel et al. (2013)

SBD PTB Marcus et al. (1993)
OpenIE OIE2016 Stanovsky and Dagan (2016)

CaRB Bhardwaj et al. (2019)
Chunk, POS CoNLL 2000 Tjong Kim Sang and Buchholz (2000)

CoNLL 2003 Tjong Kim Sang and De Meulder (2003)
SRL CoNLL 2012 Pradhan et al. (2012)
ORE TACRED Zhang et al. (2017)

Table 1: We use a total of 14 datasets across 8 tasks, including punctuation restoration. Four are internal datasets,
while the rest are publicly available.

Model architecture P R F1

ChatGPT 0-shot* .75 .71 .73
t5-small .91 .86 .88
t5-base .93 .92 .93
t5-large .94 .93 .93

Table 2: Punctuation restoration performance after 50
epochs (small), 40 epochs (base), and 20 epochs (large)
of training respectively. *Measured on a small subset of
the punctuation restoration evaluation dataset.

We observe increases in in-distribution and out-of-
distribution generalization performances across the
board. In particular, we note that sentence bound-
ary detection, arguably task closest to punctuation
restoration, achieves a near perfect score. Other
notable takeaways from the results include out-of-
distribution performance jump in open information
extraction, even when in-distribution generalization
improves little.

The results support that punctuation restoration
is an effective and efficient addition to the current
framework of natural language understanding. We
interpret this as evidence for our hypothesis that
an additional unsupervised learning objective that
focuses on capturing structure within natural lan-
guage will improves structure understanding. In ad-
dition to the generative approach taken in this sec-

tion, we discuss whether this supportive behavior
persists in other setting like joint multitask learning
(Section 4.3) and discriminative learning (Section
4.4).

4.3 Joint multitask generative approach

The joint multitask approach, where we focus on
open information extraction using the EconIE-PRO
dataset and NER using the Econ-mNER dataset,
is similar to the generative approach. The input
sequence is identical to the experiments from Sec-
tion 4.2, but the output sequence is a concatena-
tion of output sequences from the two datasets,
as illustrated in Table 6. Similarly to the genera-
tive approach, we observe that additional unsuper-
vised structure learning via punctuation restoration
results in downstream task performance improve-
ment.

4.4 Discriminative approach

Given the results from the single-task generative ap-
proach, the transfer from punctuation restoration to
multi-task generative approach may be no big sur-
prise, as there is no drastic difference between the
generative nature of the two approaches. However,
we report that our improved representations from
punctuation restoration non-trivially transfers to the
discriminative approach as well, where the decoder



Task Training set Evaluation set t5-base + PR

P R F1 P R F1

NER Econ-mNER ID .69 .65 .67 .90 .89 .89
Econ-sNER .67 .76 .71 .74 .81 .77

GENIA ID .57 .73 .64 .64 .76 .69
CoNLL03 ID .89 .90 .89 .92 .92 .92
ontonotes ID .87 .88 .88 .91 .91 .91

OpenIE EconIE-PRO ID .47 .43 .45 .60 .63 .62
CaRB .22 .16 .19 .62 .42 .50

OIE2016 ID .16 .19 .18 .19 .19 .19
CaRB .10 .15 .12 .26 .27 .27

Chunking CoNLL00 ID .94 .94 .94 .96 .96 .96
CoNLL03 .41 .41 .41 .41 .42 .42

SRL CoNLL12 ID .75 .79 .77 .84 .86 .85

SBD PTB ID .97 .72 .81 .98 .98 .98

POS CoNLL00 ID .96 .96 .96 .98 .98 .98
CoNLL03 .74 .87 .79 .84 .88 .86

RE TACRED ID .67 .83

Table 3: Results from generative NER, OpenIE, and multitask models, where we compare vanilla t5-base model to
t5-base with additional pre-training on punctuation restoration (+PR). ID is short for in-distribution evaluation,
denoting evaluation on a dataset from the same source as the training set. Each measurement is an average over a set
of 5 seeds, while training data order is not controlled.

t5-base (joint) + PR

P R F1 P R F1

Econ-mNER .86 .84 .85 .87 .86 .87
EconIE-PRO .57 .60 .58 .60 .62 .61

Table 4: NER (Econ-mNER) and OpenIE (EconIE-PRO) performance after joint training, where we compare vanilla
t5-base model to t5-base with additional pre-training on punctuation restoration (+PR). Punctuation restoration
improves performance in both NER and OpenIE. Each measurement is an average over a set of 5 seeds, while
training data order is not controlled.

t5-base (EO) + PR

P R F1 P R F1

Econ-mNER .78 .93 .85 .83 .92 .88

Table 5: Discriminative (Encoder-Only) Econ-mNER performance with (+PR) and without (t5-base) punctuation
restoration as additional pre-training. Each measurement is an average over a set of 15 seeds, while training data
order is not controlled.



Source Faker is a League of Legends esports player, currently mid laner and part owner at T1.

OpenIE (Faker, is, a League of Legends esports player) (Faker, is mid laner and part owner at, T1)
NER (Faker: PER) (T1: ORG)
Multitask (Faker: PER) (Faker, is, a League of Legends esports player)

(Faker, is mid laner and part owner at, T1) (T1: ORG)

Table 6: Example output from generative NER, OpenIE, and multitask models for illustration purposes

block is removed from the model, as illustrated in
Figure 1. After additional pre-training on punctua-
tion restoration objective, the decoder block of the
t5-base model is removed and a newly initialized
classification head is placed on top of the encoder
block. The architecture is comparable to those of
BERT-like encoder-only models. Even by retaining
weights from the encoder blocks only, we observe
that additional unsupervised structure learning via
punctuation restoration results in downstream task
performance improvement.

5 Discussion

Results from Section 4 support our hypothesis
that complementing the de-noising pre-training ob-
jective with a structure-reinforcing task improves
structure understanding. In particular, we use a
punctuation restoration objective, described in Sec-
tion 3 and evaluate with various structure-related
tasks listed in Table 1. While it is difficult to inves-
tigate the exact mechanism on how additional train-
ing on punctuation restoration improves learned
representations, we attempt to provide an explana-
tion.

Providing additional syntactic or semantic in-
formation in the form of parses have proven to be
effective in improving natural language understand-
ing (Pradhan et al., 2005; Zhang et al., 2019; Lepori
et al., 2020). That is, the current methods for rep-
resentation learning during the pre-training stage
lacks sufficient syntactic signal, and effective distil-
lation of implicit syntactic sensitivity via additional
training should improve structure understanding.
Much like how prosody helps disambiguate syn-
tactic structure in human speech processing (Kahn
et al., 2005; Price et al., 1991), punctuation can be
a useful guide in syntactic structure disambigua-
tion (Spitkovsky et al., 2010), and eventually in
structure understanding and forming a robust rep-
resentation of text. Because punctuation often indi-
cates syntactic or semantic boundaries, training a
computational system to predict punctuation from

stripped text also can train the system to predict
syntactic and semantic structure within said text,
even when there are no punctuation marks to be
restored in the original, fully punctuated text. Suf-
ficient training in punctuation restoration or with
other markers of syntactic and semantic structure
can have similar effects of explicitly providing a
syntactic or semantic parse, facilitating natural lan-
guage understanding via a stronger understanding
of sentence structure.

Such improvements are not limited to specific do-
mains or datasets and represent an overall increase
in representation robustness, as we observe out-of-
distribution performance jump in NER, OpenIE,
and chunking. Improvements also persist across
decoding methods–entity generation in NER, Ope-
nIE, SRL, and relation classification; tag sequence
generation in chunking and POS tagging; sequence
generation in sentence boundary detection; and to-
ken classification in discriminative NER. Because
of the wide range of settings in which improve-
ment is observed, We interpret this to a general im-
provement of structure understanding rather than
fortunate task-specific artifacts from the additional
training.

We claim that our methods are democratic in
that we employ a non-intrusive unsupervised learn-
ing objective that is orthogonal to other architec-
tural or methodological modifications. Punctuation
restoration can be applied to reinforce structure
understanding and improve robustness of learned
representations regardless of model choice, or task-
specific engineering policy. The objective requires
no supervision, and one can construct a training cor-
pus with little computational or manual resources.

6 Limitations

The idea of structure understanding reinforcement
via punctuation restoration is still young–decisions
made relevant to the learning objective in this pa-
per, including selection of punctuation marks and
source of learning corpus, are arbitrary and warrant



additional investigation in future work. Our set of
training hyper-parameters also will benefit from
additional attention.

While our experiments show promise in base-
sized NLU models for English, its effects in larger
models, implications to generative or conversa-
tional systems, and generalization to other lan-
guages and thus language-agnostic nature also need
to be verified.

It is also likely that punctuation restoration is
not the only unsupervised learning objective that
can be used to improve the representation learn-
ing stage of training NLP systems. Other forms
of unsupervised structure learning, possibly sim-
pler and more effective methods than punctuation
restoration, as well as optimizations on objective
combination (e.g. with word prediction methods)
should be studied in future work.

Despite many unanswered questions, however,
we conclude that punctuation restoration is an ef-
fective learning objective that improves structure
understanding without supervision.

Responsible research statement

Our work primarily builds on T5 (Raffel et al.,
2019), with the Apache License 2.0. Our model
and framework is thus a Derivative Work, and also
adopts the same license. We also use ChatGPT
(Brown et al., 2020) as a punctuation restoration
performance baseline, and as a debugging assistant
during the project’s technical implementation.

The Econ-mNER dataset was annotated by
paid, full-time employees who are trained linguists
knowledgeable about their work and the dataset’s
downstream use. They are compensated similarly
to the region’s 2021 median income level. Their
work has been reviewed by an internal board to
not contain any personally identifiable information.
Other internal datasets did not require manual an-
notation.
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